l1和l2正則化代表什么意思 機(jī)器學(xué)習(xí)中L1正則化和L2正則化的區(qū)別?
機(jī)器學(xué)習(xí)中L1正則化和L2正則化的區(qū)別?L1正則化假設(shè)參數(shù)的先驗(yàn)分布為拉普拉斯分布,可以保證模型的稀疏性,即某些參數(shù)等于0;L2正則化假設(shè)參數(shù)的先驗(yàn)分布為高斯分布,可以保證模型的穩(wěn)定性,即,參數(shù)值不會(huì)
機(jī)器學(xué)習(xí)中L1正則化和L2正則化的區(qū)別?
L1正則化假設(shè)參數(shù)的先驗(yàn)分布為拉普拉斯分布,可以保證模型的稀疏性,即某些參數(shù)等于0;L2正則化假設(shè)參數(shù)的先驗(yàn)分布為高斯分布,可以保證模型的穩(wěn)定性,即,參數(shù)值不會(huì)太大或太小。在實(shí)際應(yīng)用中,如果特征是高維稀疏的,則使用L1正則化;如果特征是低維稠密的,則使用L1正則化;如果特征是稠密的,則使用L2正則化。最后附上圖表。右邊是L1正則,最優(yōu)解在坐標(biāo)軸上,這意味著某些參數(shù)為0。
l0 l1 l2正則化項(xiàng)的區(qū)別和特點(diǎn)?
L1正則化假設(shè)參數(shù)的先驗(yàn)分布為拉普拉斯分布,可以保證模型的稀疏性,即某些參數(shù)等于0;L2正則化假設(shè)參數(shù)的先驗(yàn)分布為高斯分布,可以保證模型的穩(wěn)定性,即,參數(shù)值不會(huì)太大或太小。在實(shí)際應(yīng)用中,如果特征是高維稀疏的,則使用L1正則化;例如。
卷積神經(jīng)損失函數(shù)怎么加入正則化?
[AI瘋狂高級(jí)正則化-今日頭條]https://m.toutiaocdn.com/item/6771036466026906123/?app=newsuArticle&timestamp=157662997&reqid=201912180846060100140470162DE60E99&groupid=6771036466026906123&ttfrom=copylink&utmuSource=copylink&utmuMedium=toutiaoios&utmuCampaign=client神經(jīng)網(wǎng)絡(luò)正則化技術(shù)包括數(shù)據(jù)增強(qiáng)、L1、L2、batchnorm、dropout等技術(shù)。本文對(duì)神經(jīng)網(wǎng)絡(luò)正則化技術(shù)及相關(guān)問題進(jìn)行了詳細(xì)的綜述。如果你有興趣,可以關(guān)注我,繼續(xù)把人工智能相關(guān)理論帶到實(shí)際應(yīng)用中去。
機(jī)器學(xué)習(xí)中常常提到的正則化到底是什么意思?
簡(jiǎn)而言之,機(jī)器學(xué)習(xí)就是根據(jù)樣本數(shù)據(jù)訓(xùn)練一個(gè)模型,然后用這個(gè)模型來計(jì)算測(cè)試數(shù)據(jù)的輸出值。由于樣本數(shù)據(jù)存在一定的誤差,訓(xùn)練后的模型容易出現(xiàn)“過擬合”(即模型與樣本數(shù)據(jù)幾乎匹配,但不是實(shí)際模型)。正則化是為了解決“過擬合”問題,使模型更接近實(shí)際情況,防止被錯(cuò)誤的樣本數(shù)據(jù)“偏誤”。
在上圖中,圖1擬合不足(通常是因?yàn)闃颖緮?shù)據(jù)太少),圖2擬合過度。該模型雖然與樣本數(shù)據(jù)完全吻合,但過于復(fù)雜和陌生,明顯脫離實(shí)際。圖3是添加正則化后接近真實(shí)模型的結(jié)果。