tensorflow框架 Keras還是TensorFlow,程序員該如何選擇深度學習框架?
Keras還是TensorFlow,程序員該如何選擇深度學習框架?如果您想用少量的代碼盡快地構(gòu)建和測試神經(jīng)網(wǎng)絡,keras是最快的,而且sequential API和model非常強大。而且keras
Keras還是TensorFlow,程序員該如何選擇深度學習框架?
如果您想用少量的代碼盡快地構(gòu)建和測試神經(jīng)網(wǎng)絡,keras是最快的,而且sequential API和model非常強大。而且keras的設計非常人性化。以數(shù)據(jù)輸入和輸出為例,與keras的簡單操作相比,tensorflow編譯碼的構(gòu)造過程非常復雜(尤其對于初學者來說,大量的記憶過程非常痛苦)。此外,keras將模塊化作為設計原則之一,用戶可以根據(jù)自己的需求進行組合。如果你只是想快速建立通用模型來實現(xiàn)你的想法,keras可以是第一選擇。
但是,包裝后,keras將變得非常不靈活,其速度相對較慢。如果高度包裝,上述缺點將更加明顯。除了一些對速度要求較低的工業(yè)應用外,由于tensorflow的速度較高,因此會選擇tensorflow
如果您在驗證您的想法時,想定義損失函數(shù)而不是使用現(xiàn)有的設置,與keras相比,tensorflow提供了更大的個性空間。此外,對神經(jīng)網(wǎng)絡的控制程度將在很大程度上決定對網(wǎng)絡的理解和優(yōu)化,而keras提供的權(quán)限很少。相反,tensorflow提供了更多的控制權(quán),比如是否訓練其中一個變量、操作梯度(以獲得訓練進度)等等。
盡管它們都提供了深度學習模型通常需要的功能,但如果用戶仍然追求一些高階功能選擇,例如研究特殊類型的模型,則需要tensorflow。例如,如果您想加快計算速度,可以使用tensorflow的thread函數(shù)來實現(xiàn)與多個線程的相同會話。此外,它還提供了調(diào)試器功能,有助于推斷錯誤和加快操作速度。
tensorflow怎么調(diào)用ckpt繼續(xù)訓練?
在訓練模型之后,為了以后重用它,我們通常需要保存模型的結(jié)果。如果用張量流實現(xiàn)神經(jīng)網(wǎng)絡,需要節(jié)省的是神經(jīng)網(wǎng)絡的權(quán)值。建議您可以使用saver類來保存和加載模型的結(jié)果。1使用tf.列車保護器近年來,隨著信息社會、學習科學和課程改革的發(fā)展,深度學習是一種新的學習模式和形式。
目前,對深度學習的概念有很多答案,很多專家學者的解釋是本質(zhì)意義一致的表述略有不同。
李嘉厚教授認為,深度學習是建立在理解的基礎上的。學習者可以批判性地學習新的想法和事實,將它們?nèi)谌朐械恼J知結(jié)構(gòu),將許多想法聯(lián)系起來,并將現(xiàn)有的知識轉(zhuǎn)移到新的情境中,從而做出決策和解決問題。
郭華教授認為,深度學習是在教師指導下的一個有意義的學習過程,學生圍繞挑戰(zhàn)性的學習主題,全心投入,體驗成功,獲得發(fā)展。它具有批判性理解、有機整合、建設性反思和遷移應用的特點。
深度學習有幾個特點。一是觸動人心的學習。第二,體驗式學習。三是深入認識和實踐創(chuàng)新的研究。