python實現(xiàn)kmeans聚類 在Python中聚類后,如何知道哪個樣本屬于哪一類?
在Python中聚類后,如何知道哪個樣本屬于哪一類?首先可以看到聚類后的樣本如果使用Python sklearn中的K-means聚類算法,算法類本身就有一些屬性可以知道聚類后的情況。例如,有一些模型
在Python中聚類后,如何知道哪個樣本屬于哪一類?
首先可以看到聚類后的樣本
如果使用Python sklearn中的K-means聚類算法,算法類本身就有一些屬性可以知道聚類后的情況。
例如,有一些模型屬性,clusterucentersuuuuuux是聚類后得到的聚類中心,標簽uuux如上圖所示,樣本[1.4,0.2]對應第三個類別,聚類結(jié)果還有每個類別的聚類中心和每個類別的樣本數(shù)。這種方法可以用來尋找相應的標簽分類。
當然,還有一個predict方法,它可以直接輸出輸入樣本的類標簽
我已經(jīng)使用Python 7年多了,現(xiàn)在我正在從事視頻對象識別算法的開發(fā),使用tensorflow,它也是基于Python語言的。Python是一種解決所有問題的語言,值得擁有
!我從2012年開始學習機器學習,因為沒有指導,我走了很多彎路,浪費了很多時間和精力。一開始,我讀了《機器學習實踐》一書。雖然我不懂,但我還是把書中所有的例子都跑了一遍,漸漸發(fā)現(xiàn)自己不懂算法也能達到預期的效果。然后,我會直接開發(fā)我想要的程序。當我遇到需要機器學習的部分時,我會直接復制它。一周后,演示會出來。在這個時候,你會發(fā)現(xiàn)你已經(jīng)開始了。剩下的就是理解每種算法的范圍和局限性。
不要掉進無休止的書堆里,練習和做項目
!呃,地鐵到了。我要去工作了。我還沒做完呢。有機會我會繼續(xù)討論
當你問這個問題時,你可能主要懷疑Python的性能。事實上,Python的許多更好的模塊都是用C語言編寫的,例如,numpy是一個常用的Python數(shù)值計算庫,它是用C語言實現(xiàn)的,而且計算機的配置也不像十年前那么低。今年,python掀起了一股依靠人工智能的浪潮。作為人工智能產(chǎn)品開發(fā)中最流行的編程語言,人工智能相關(guān)產(chǎn)品的開發(fā)自然離不開大數(shù)據(jù)的支持,因此Python能否進行大規(guī)模的數(shù)值計算,毋庸置疑。