成人AV在线无码|婷婷五月激情色,|伊人加勒比二三四区|国产一区激情都市|亚洲AV无码电影|日av韩av无码|天堂在线亚洲Av|无码一区二区影院|成人无码毛片AV|超碰在线看中文字幕

keras加載模型權(quán)重繼續(xù)訓(xùn)練 keras已訓(xùn)練好模型,一段時間后又有新數(shù)據(jù),如何在已有模型基礎(chǔ)上繼續(xù)做增量訓(xùn)練?

keras已訓(xùn)練好模型,一段時間后又有新數(shù)據(jù),如何在已有模型基礎(chǔ)上繼續(xù)做增量訓(xùn)練?我也是一個菜鳥,可以用來交流。。。在我看來,如果網(wǎng)絡(luò)不需要調(diào)整(例如不添加新的類別),只需使用一個小的學(xué)習(xí)率來微調(diào)網(wǎng)絡(luò)

keras已訓(xùn)練好模型,一段時間后又有新數(shù)據(jù),如何在已有模型基礎(chǔ)上繼續(xù)做增量訓(xùn)練?

我也是一個菜鳥,可以用來交流。。。

在我看來,如果網(wǎng)絡(luò)不需要調(diào)整(例如不添加新的類別),只需使用一個小的學(xué)習(xí)率來微調(diào)網(wǎng)絡(luò)的所有數(shù)據(jù)。

如果網(wǎng)絡(luò)結(jié)構(gòu)發(fā)生變化(如增加新的類別),在前期(如conv層)固定網(wǎng)絡(luò)參數(shù),后期(如FC層)直接學(xué)習(xí)參數(shù)。然后放開凍結(jié),微調(diào)大局。

如何估算神經(jīng)網(wǎng)絡(luò)的最優(yōu)學(xué)習(xí)率?

。

具體來說,當(dāng)前主流的神經(jīng)網(wǎng)絡(luò)模型使用梯度下降算法進行訓(xùn)練,或?qū)W習(xí)參數(shù)。學(xué)習(xí)速率決定權(quán)重在梯度方向上成批移動的距離。理論上,學(xué)習(xí)率越高,神經(jīng)網(wǎng)絡(luò)的學(xué)習(xí)速度越快。但是,如果學(xué)習(xí)速率過高,可能會“穿越”損失函數(shù)的最小值,導(dǎo)致收斂失敗。

上圖左邊是高學(xué)習(xí)率,右邊是低學(xué)習(xí)率,來源:mikkel Duif(quora)

那么,如何找到最佳學(xué)習(xí)率?

方法。但是,這種方法的初始學(xué)習(xí)率(上例中為0.1)不應(yīng)該太高。如果初始學(xué)習(xí)率太高,可能會“穿越”最優(yōu)值。

另外,還有另外一種思路,就是逆向操作,從學(xué)習(xí)率很低開始,每批之后再提高學(xué)習(xí)率。例如,從0.00001到0.0001,再到0.001,再到0.01,再到0.1。這個想法背后的直覺是,如果我們總是以很低的學(xué)習(xí)率學(xué)習(xí),我們總是可以學(xué)習(xí)到最好的權(quán)重(除非整個網(wǎng)絡(luò)架構(gòu)有問題),但它將非常緩慢。因此,從一個很低的學(xué)習(xí)率開始,我們可以肯定地觀察到損失函數(shù)的下降。然后逐漸加大學(xué)習(xí)率,直到學(xué)習(xí)率過高,導(dǎo)致發(fā)散。該方法還避免了上述方法初始學(xué)習(xí)率過高,一次“穿越”最優(yōu)值的隱患。這是Leslie n.Smith在2015年的論文《訓(xùn)練神經(jīng)網(wǎng)絡(luò)的循環(huán)學(xué)習(xí)率》中提出的方法。

keras訓(xùn)練好的網(wǎng)絡(luò),怎么在c 程序中調(diào)用?

我嘗試使用其他培訓(xùn)數(shù)據(jù)來調(diào)用Java。一些建議。首先,如果訓(xùn)練模型很小,可以先得到訓(xùn)練參數(shù),然后用C語言調(diào)用,當(dāng)然,矩陣的計算需要自己準備。

我以前是這樣的,但它有很大的局限性。最大的問題是這種方法的前提,當(dāng)模型不復(fù)雜時。這樣,公共應(yīng)用服務(wù)器仍然可以承受計算負載。

但是,如果模型復(fù)雜,則不建議這樣做。機器無法運行,針對性的浮點優(yōu)化也無法在短時間內(nèi)解決。此時仍建議使用培訓(xùn)機通過web服務(wù)完成Python的遠程調(diào)用,實現(xiàn)業(yè)務(wù)應(yīng)用。

Keras還是TensorFlow,程序員該如何選擇深度學(xué)習(xí)框架?

如果您想用少量代碼盡快構(gòu)建和測試神經(jīng)網(wǎng)絡(luò),keras是最快的,而且順序API和模型非常強大。而且keras的設(shè)計非常人性化。以數(shù)據(jù)輸入和輸出為例,與keras的簡單操作相比,tensorflow編譯碼的構(gòu)造過程非常復(fù)雜(尤其對于初學(xué)者來說,大量的記憶過程非常痛苦)。此外,keras將模塊化作為設(shè)計原則之一,用戶可以根據(jù)自己的需求進行組合。如果你只是想快速建立通用模型來實現(xiàn)你的想法,keras可以是第一選擇。

但是,包裝后,keras將變得非常不靈活,其速度相對較慢。如果高度包裝,上述缺點將更加明顯。除了一些對速度要求較低的工業(yè)應(yīng)用外,由于tensorflow的速度較高,因此會選擇tensorflow

如果您在驗證您的想法時,想定義損失函數(shù)而不是使用現(xiàn)有的設(shè)置,與keras相比,tensorflow提供了更大的個性空間。此外,對神經(jīng)網(wǎng)絡(luò)的控制程度將在很大程度上決定對網(wǎng)絡(luò)的理解和優(yōu)化,而keras提供的權(quán)限很少。相反,tensorflow提供了更多的控制權(quán),比如是否訓(xùn)練其中一個變量、操作梯度(以獲得訓(xùn)練進度)等等。

盡管它們都提供了深度學(xué)習(xí)模型通常需要的功能,但如果用戶仍然追求一些高階功能選擇,例如研究特殊類型的模型,則需要tensorflow。例如,如果您想加快計算速度,可以使用tensorflow的thread函數(shù)來實現(xiàn)與多個線程的相同會話。此外,它還提供了調(diào)試器功能,有助于推斷錯誤和加快操作速度。